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Background 

• Energetic particles can be produced by fusion reaction(3.5 MeV 
alpha particles) or auxiliary heating process (ICRH or NBI). 

 

• Fast particles can resonate with Alfvénic modes and excite 
instabilities that may result in significant energetic particle 
transport. 

 

• The existence of Toroidal Alfven Eigenmodes(TAEs) driven by fast 
ions in burning plasmas has been convincingly confirmed in 
experiment.  

 

• Due to nonlinear wave-particle interaction, the wave frequency 
can have considerable sweeping.  
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Motivation 

We need to describe the resonant response of energetic particles, 
and integrated with MHD equations for self-consistent simulation of 
the nonlinear wave particle interaction. 
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NBI-driven modes with downward frequency sweeping on MAST 



Outline 

•  MHD stability analysis for Alfvénic Modes 
1. AEGIS framework 

2. Continuum absorption near TAE gap 

 

• Energetic Particle dynamics 
1.Canonical Straight field line coordinates 

2.Scheme for constructing Action-Angle variables 

 

 

 

 
4/37 



Outline 

•  MHD stability analysis for Alfvénic Modes 
1. AEGIS framework 
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Introduction to AEGIS 
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• AEGIS* is an ideal MHD eigenvalue code with an adaptive grid mesh in 
radial direction, and Fourier decomposition in the poloidal and 
toroidal directions. 

 

• It uses the shooting method radially to get the independent solution in 
different regions and construct an appropriate linear combination of 
the solutions. 

 

• AEGIS code is used for linear MHD stability analysis, for example, 
Alfvénic cascades in MST.  And we found that pressure gradient has 
opposite effects on the n = 4 and n = 5 modes observed in experiment. 

 
*L.J. Zheng and M. Kotschenreuther, J. Comp. Phys. 211 (2006) 748 



Outline 

•  MHD stability analysis for Alfvénic Modes 

2. Continuum absorption near TAE gap 
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Shear Alfvén continuum 
• Local dispersion relation for shear 

Alfvén wave: 

      𝜔𝐴 = 𝑘∥𝑣𝐴 

 

 

• Toroidicity couples neighboring polo-
idal branches and forms a gap in the 
spectrum where toroidicity-induced 
Alfvén eigenmodes (TAE) reside. 
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• Continuum Absorption/Damping: For a periodic perturbation at 
frequency ω, energy is resonantly absorbed at the continuum 
crossing where 𝜔 = 𝜔𝐴. 

*M. Li, B. N. Breizman, L. J. Zheng, et al , Phys. Plasmas 21, 082505 (2014) 

Driving frequency 



Continuum absorption near TAE gap 
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• For energetic particle mode in the continuum, proper evaluation of 
continuum absorption is required. 

 

• Furthermore, when the frequency matches the tip-like structure in the 
TAE gap, how much is the continuum absorption then? 

 

 

 

 

 

 

 

• Challenge:  
 

 numerically calculate the continuum 
absorption with AEGIS, even when 
frequency goes to the tip of the 
continuum spectrum. 

Continuum tip 



Modification of AEGIS framework 
• I add an oscillating external source current with frequency ω, the MHD 

equation for plasma displacement 𝝃 becomes: 

 

 

 

 

• I introduce a small friction force −𝜌𝛾𝒗 by adding a positive imaginary part ϒ in 
frequency, with ϒ<< ω. 

 

 

• The adaptive grids in AEGIS enables us to get accurate result with relatively 

small ϒ ~10−𝟓 ω. 

• The dissipative power of the friction force: 

 

 

      represents the continuum absorption in the limit of ϒ ->0  
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MHD force operator Source term 



Theoretical consideration of tip 
absorption 

• With analytical simplification, continuum absorption is inversely 
proportional to the slope of Alfvén continuum at the crossing 
point(d𝜔𝐴/d𝑟) away from the gap. 

 

• Continuum tip absorption generally does not go to infinity though 
the slope of the continuum is zero at the tip, and the lower and 
upper tips of the TAE gap can have very different continuum 
absorption features.* 

 

 

 

 

11/37 *M. Li, B. N. Breizman, L. J. Zheng, et al. , New J. Phys. 103596.R1 (2015) 

•  The difference result from an eigenmode whose frequency can be 
arbitrarily close to the upper tip whereas the lower tip is always a 
finite distance away from the closest eigenmode. 



Lower tip absorption from AEGIS 
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• Lower tip absorption has nice 

    ∆𝜔 scaling below the lower  
    tip and vanishes at the tip. 

 
 
 
• We find the lower tip absorption 

pattern doesn’t change 
significantly as parameters 
change. 

TAE Gap Alfvén continuum 
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Upper tip absorption from AEGIS 
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• We vary the equilibrium 
profile(from Case 1 to Case 8) to 
change the upper TAE frequency.  
 

 
• The absorption pattern changes 

dramatically as the upper TAE 
frequency moves upward and 
merges into the continuum. 
 
 

• The results indicate that AEGIS 
can handle continuum 
absorption problem for Alfvénic 
waves pretty well. 
 

 
 

Alfvén 
continuum 

TAE Gap 

Frequency (Normalized to the tip frequency) 

C
o

n
ti

n
u

u
m

 a
b

so
rp

ti
o

n
 



Outline 

 

• Energetic Particle dynamics 
1.Canonical Straight field line coordinates 
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Guiding center Lagrangian 

Recall the gyro-averaged Littlejohn Lagrangian for the particle 

guiding center motion: 

                                                                                                    (1) 

        with the dynamical variables: 
 
•     is the guiding center position 
•     is the parallel velocity along the magnetic field. 
•     is the gyroangle. 

•     is the magnetic moment. 
•                is the direction of the magnetic field,      is vector potential,     is 

the scalar potential. 
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Hamiltonian form for GC motion 

• There are six dynamical variables for the guiding center motion. 

 

• The six dynamical variables do not immediately split into three 

canonical pairs for Hamiltonian formalism,  because the Littlejohn 

Lagrangian generally contains four time derivatives rather than 

three. 

 

• The general step to achieve Hamiltonian form is to eliminate 𝜓  in the 

Lagrangian. 
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• Roscoe White and Allen Boozer proposed that in Boozer coordinates  

𝑨 = 𝐴𝜃𝛁𝜃 + 𝐴𝜁𝛁𝜁;  𝑩 = 𝛿𝛁𝜓 + 𝐵𝜽𝛁𝜃 + 𝐵𝜻𝜵𝜁, 

   𝛿 doesn’t affect the guiding center trajectory and can be neglected, so  

that 𝜓  = 𝛁𝜓 ∙ 𝑿  term doesn’t appear in the Littlejohn Lagrangian. 

• Then the Littlejohn Lagrangian in equilibrium field can be approximate 

by 

 

      and then derive the guiding center equation of motion.* 

• However, simply dropping 𝜹 will result in the modification of the 

frequency of guiding center motion. 
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White & Boozer approach  

*R.B. White, The Theory of Toroidally Confined Plasmas, 2014 



Canonical field coordinates approach 
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• A rigorous way is to find canonical field coordinates in which the 

covariant components of the radial magnetic field 𝑩𝝍 vanishes, so 

that:  

 

      Then, for the unperturbed guiding center motion:  

 

 

 

• We need to find global flux coordinate system that can be used 

in realistic tokamak simulation.  



Revisiting straight field line coordinates 
• Straight field line coordinates are magnetic flux coordinates, in which the poloidal 

or toroidal magnetic flux                     is used as the radial coordinate. 

• Poloidal (     ) and toroidal angles (     ) are defined so that the field line is 

straight in the             plane. 

 

 

 

 

 

 

• The corresponding vector potential is                                    ,  the safety factor is 

                                 and magnetic filed is 19/37 



Existing flux coordinates 

• Straight field line coordinates are not unique. Here are some flux coordinates 

that are commonly used: 

 

 

 

 

• The common advantage of straight field line coordinates is that they facilitate 

the separation of plasma effects along and perpendicular to magnetic field 

lines for magnetized plasmas. 

 

• We seek for “canonical straight field line coordinates”, to eliminate 𝐵𝜓 while 

maintaining the property of straight field line coordinate. 
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Coordinate transformation equation 
We introduce a function 𝜈 𝜓, 𝜃  and transform the toroidal and poloidal angles 

simultaneously (𝜃𝑐 = 𝜃 + 𝜈 𝜓, 𝜃 ; 𝜁𝑐 = 𝜁 + 𝑞𝜈 𝜓, θ ), so that the new 

coordinates has straight field line as the general flux coordinate.  

Then the vector potential preserves: 𝐴 = 𝜓𝛻𝜃𝑐 − 𝜓𝑝𝛻𝜁𝑐. 

Thus the only constraint to canonical field is 

 

We then end up with a nonlinear equation for 𝜈 

 

with 

–𝐶1 =
𝐺12+𝑞𝐺31

𝐺22+2𝑞𝐺23+𝑞2𝐺33
, 𝐶2 = −𝑞′

𝐺23+𝑞𝐺33

𝐺22+2𝑞𝐺23+𝑞2𝐺33
 

–where 𝐺12, 𝐺31, 𝐺22, 𝐺33, 𝐺23 are the equilibrium matrices. 
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𝑩 ∙ 𝛁𝜃𝑐 × 𝜵𝜁𝑐 = 0 



Ordering in the transformation 
equation 

We found there is an apparent ordering in Eq. (3), in PEST coordinates 

𝐶1~
𝛻𝜙 2(𝛻𝜓 ∙ 𝛻𝜃)

𝑞2 𝛻𝜓 ∙ 𝛻𝜃 2
~𝜀2, 𝐶2~1 

The ordering indicates that for large aspect ratio tokamak, the 

modification to the poloidal angle is relatively small, which ensures a 

global solution to the equation. 

 

 Note that 𝜈 has to satisfy the periodic boundary condition in 𝜃, we 

use Fourier transform and set 𝜈 to zero at the magnetic axis to 

integrate equation (3) numerically. 
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Implementation of the new coordinates 

• With the ITER-like equilibrium, we start from PEST coordinates and 
compare the resulting canonical straight field line coordinates with 
PEST. 
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The difference in poloidal angle between 
PEST and new coordinates is very small. 

𝐵𝜓 vanishes in canonical straight field 

line coordinates. 

𝐵𝜓 𝜈 



Boundary condition effects 

• The grid mesh of canonical straight field line coordinates can 
change with boundary conditions 
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𝜈 =0 at the magnetic axis 𝜈 ~sin𝜃 at the magnetic axis 



Remarks about the canonical straight 
field line coordinates 

 

 The new magnetic flux coordinates are convenient for both particle 

simulation and MHD simulation. 

 Correction to the poloidal and toroidal angles are small. 

 The radial component of the magnetic field vanishes in the new 

coordinate, thus enabling a Hamiltonian description of the GC motion. 

 There are multiple ways to perform the transformation. 
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M. Li et al., Journal of Computational Physics, 326 324 (2016). 



Guiding center orbits in the ITER-like 
equilibrium 
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Only  
Copassing 

Only 
Conterp
assing 

trapped 

Both copassing 
and 
conterpassing  

Different orbit types given fixed 𝜇 

Passing 
particle 
orbit 

Banana 
particle 
orbit 



Outline 

•  

 

• Energetic Particle dynamics 

2.Scheme for constructing Action-Angle variables 
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Advantage of Action-Angle variables 

With canonical straight field line coordinates, we are able to describe 
transport of resonant energetic particles in the Action-Angle variables 
associated with unperturbed guiding center orbit. 

 

Benefits: 

• The equilibrium orbit is separated from the perturbed motion. 

 

• It is easier to identify resonant particles. 

 

• Wave and particle interaction can be simplified to the 1D bump-on-
tail problem for single resonance cases. 
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Action-Angle variables for unperturbed 
GC motion 

• The unperturbed GC motion is fully integrable, we consider the 
generating function: 

 G= 𝜁𝑃𝜁 + 𝜉 
𝑚𝑐

𝑒
𝜇 +  𝑃𝜃 𝐻; 𝑃𝜁 ;𝜇 ; 𝜃 d𝜃

𝜃

0
 

     which will give us the action-angle variables.  

     The Lagrangian is 

        L = 𝑃𝜁 𝜁  + 𝑃𝜃 𝜃  +   
𝑚𝑐

𝑒
𝜇 𝜉  − 𝐻(𝑃𝜁 ,𝑃𝜃 , 𝜇 ) 

     and the actions are constants of motion. 

 

• We then numerically construct the coordinate transformation in particle 

phase space from 𝑣∥, 𝜓, 𝜃, 𝜁  to(𝑃𝜁 ,𝑃𝜃 , 𝜁 , 𝜃 ) 
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Hamiltonian with perturbed fields 
• In the presence of a general perturbed field, we can modify the 

coordinate and momentum to retain the Hamiltonian form. 

 

 

 

      where f and g are functions of the perturbed fields. 

 

• The difference between new canonical momenta from the 
unperturbed ones is proportional to perturbed field 𝐸, which is 
relatively small compared to the change of resonant particle 
momentum by the waves (~ 𝐸).  

 

• We can then use the unperturbed momentum (and the 
unperturbed action-angle variables) to describe the perturbed 
Hamiltonian. 
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Perturbed Hamiltonian in the Action-
Angle variables 

• The perturbed Hamiltonian is 
 

𝐻 = 𝐻0 𝑃𝜁 ,𝑃𝜃 , 𝜇 + 𝐻1(𝑃𝜁 ,𝑃𝜃 , 𝜇 , 𝜁 , 𝜃 , 𝑡) 

 

• Take into account the periodic boundary condition in terms of 
angles for the  perturbation, 
 

𝐻 = 𝐻0 𝑃𝜁 ,𝑃𝜃 , 𝜇 + 𝑉1 𝑃𝜁 ,𝑃𝜃 , 𝜇 , 𝑛, 𝑙 exp (𝑖𝑙𝜃 + 𝑖𝑛𝜁 − 𝑖  𝜔 𝑡 d𝑡) 

 

     where 
 

𝑉1 𝑃𝜁 ,𝑃𝜃 , 𝜇 , 𝑛, 𝑙 =
1

(2𝜋)2
  𝐻1(𝑃𝜁 ,𝑃𝜃 , 𝜇 , 𝜁 , 𝜃 , 𝑡)𝑒−𝑖𝑙𝜃

 −𝑖𝑛𝜁 𝑑𝜁 𝑑𝜃 
2𝜋

0

2𝜋

0

 

 

       The summation adds up the contribution for all resonances. 
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Reducing to one dimensional 

• In the case of single resonance without overlapping  

𝐻 = 𝐻0 𝑃𝜁 ,𝑃𝜃 , 𝜇 + 𝑉1 𝑃𝜁 ,𝑃𝜃 , 𝜇 , 𝑛, 𝑙 exp (𝑖𝑙𝜃 + 𝑖𝑛𝜁 − 𝑖  𝜔 𝑡 d𝑡) 

• We can transform the Hamiltonian to 

𝐻 = 𝐻0 𝑝, 𝐽, 𝜇 + 𝑉1 𝑝, 𝐽, 𝜇 , 𝑛, 𝑙 exp (𝑖𝑞 − 𝑖  𝜔 𝑡 d𝑡) 

       where 

𝑝 =
𝑃𝜁 

𝑙
, 𝑞 = 𝑙𝜃 + 𝑛𝜁  

       and 𝐽 = 𝑙𝑃𝜁 − 𝑛𝑃𝜃   is another conserved quantity as 𝜇 

• Similar to the process gyro-averaging, the Vlasov equation is 
reduced to 1D  

𝜕𝛿𝑓

𝜕𝑡
+ 𝑛𝜔𝜁 +

𝜕𝐻1
𝜕𝑝

𝜕𝛿𝑓

𝜕𝑞
−
𝜕𝐻1
𝜕𝑞

𝜕𝛿𝑓

𝜕𝑝
=
𝜕𝐻1
𝜕𝑞

𝜕𝐹0
𝜕𝑝
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Transport of resonant particles in 
Action-Angle coordinates 

33/37 *B.N.Breizman 2010 Nucl. Fusion 50 084014 

In nonlinear frequency sweeping events, a group of trapped particles slow 
down without losing coherency, resulting in considerable frequency shifts.* 



Computation grid mesh for the single 
resonant case 
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J 

p 
We generate numerically mesh of (J,p) with resonant number 𝑛 = 1, 𝑙 =
1 for the compassing particles, with resonant frequency labeled and the 
value of perturbed Hamiltonian stored on every grid point. 



Nonlinear wave-particle interaction 
closure-ongoing 

• After calculation of  the Vlasov equation in Action-Angle variables, 
the distribution function needs to be transformed and integrated in 
the AEGIS and complete the closure. 

 

• The unfinished piece is to change the ideal MHD code AEGIS from 
eigenvalue to initial value code, to calculate the nonlinear wave and 
particle interaction. 
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Summary 

• Continuum absorption is evaluated on the basis of AEGIS, to resolve 

the different absorption features near TAE gap. 

• “Canonical straight field line coordinates” are introduced, which 

provide a Hamiltonian description of particle guiding center motion 

while maintaining the conventional straight field line feature. 

• Action-Angle coordinate system is constructed in the new magnetic 

flux coordinates, so that single resonance problem is simplified to one 

dimensional. 

• Future work about nonlinear evolution of energetic-particle-driven 

mode is on the way. 
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Questions? 


